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1-D SCHRODINGER EQUATION REVIEW

REVIEW COMPLEX NUMBERS

; ty
For z =X +1y, the complex conjugate is z* = x —iy and the absolute
value is the distance on the complex plane from the origin to the point z. v pZ=X+I1y
2 * . N L2 2 £y
|z| =27 —(x+|y)(x—|y)—x +y & 0
We also utilize Euler's formula stating tha e = cos0+isin0. X

REVIEW CHAPTER 7: THE 1-D SCHRODINGER EQUATION AND TUNNELING

U(x) . A PARTICLE IN A BOX: ALLOWED ENERGY STATES
az3a For a quantum particle of energy, E, in a potential box where U(x) = O
/\7\ for O < x <aq, it can only exist between x = 0 and x = a (since E = K+ U and
U = w outside of 0 < x<a). A quantum particle is described by a wave

a=> function that can exist in the box at only certain wavelenths (&, first

/\/ three shown) the wave function must be zero at the sides (x = 0 & x = a).
a=1x For a standing wave, w(x) = Asin(kx) + Bcos(kx), this requires that

/\ .

ka=nn wheren=1,2,3,.. and k= Tn is the wave number
X
@ xxx Other than saying a quantum particle is described by a wave, this is just math! ***

The physics comes in with de Broglie:

p="=tk for k=2" and h=1" TZb11

T

Thus, the allowed momenta of the particle in the box are:

_N, nm_nmh _hrh

2kp:>pa

Since the energy of the particle is purely kinetic (U = 0), E = pZ/Zm gives the allowed energies:
2322
2 T /]

E=n =,
2ma

n=12,3, .. TZDII (7.23)
THE TIME-INDEPENDENT SCHRODINGER EQUATION

Physics is about change and its governing equations are differential equations like Newton's
Second Law, XF = dp/dt. To find a differential equation for a quantum particle, take deriva-
tives:

2
v(x) = Asin(kx), d\z—ix) = kAcos(kx), d ;VX(ZX) ~ KeAsin(kx) = K%y

Recalling de Broglie (p = k) and K = p?/2m = (hk)?/2m gives
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where we can replace K = E - U(x) to write the 1-D Schrédinger Equation

d2
¥ _ —k2\|! :i‘_T[U(X)_E]W TZDII (7.39)

\

PROBABILITY DENSITY, NORMALIZATION, & EXPECTATION VALUE
2
TZDII Equation 6.14 states that |‘P(F‘r)| dV is the probability of finding a particle in the

volume V at rand 6.15 says
|‘P(F,‘r)|2 = probability (volume) density for finding particle at r TZDII (6.15)
For our 1-dimensional case, we can write the linear probability density as |\|/(x)|2 and
T . * 2 2
Prob. of finding particle between x, & x, = J'|w(x)| dx ~ |\|I(X = x1)| AX

In general, the probability of finding the particle somewhere is unity, thus, the normalization
condition is

D\V(X)‘de =1 TZDII (7.55)

The expectation value (value expected after many measuremnts) of f(x) with a probability den-

sity |\|/ (x)r is

jf(x)‘\u(x)r dx = If(X)P(X)dX TZDII (7.69)

TUNNELING

Since wave functions can penetrate into regions where U > E as an exponentially decreasing
fuction it can penetrate a barrier. If the wave function within the barrier does not go to zero
before emerging from it, the wave can emerge on the other side.

The probability density of a wave is proportional to the amplitude squared. Thus the proba-
bility that a wave will tunnel through a

barrier is the ratio of the squares of Ve %
the amplitudes of the wave leaving to A Al/
the wave entering: ) '\//\\//\\//\
2 T i
PTunnel = ARZithr

ALef'r
This ratio is that of the exponential decrease across the barrier, namely that
o 2% (x0) ~2L,[2m(U,-E) ~2L.J2me? (U, -E)
. __2u{x=%Xy) _ _-—2al __ R _ h
Tumel =, P =e=e =e ¢ TZDII (7.104)
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